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BOUNDARY NODE CORRECTION AND 
SUPERCONVERGENCE IN THE FEM 

M. YAO AND D. S. MALKUS* 
Department of Engineering Mechanics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A. 

SUMMARY 
Convergence improvement and superconvergence behaviour, obtained by the simple boundary node 
correction (BNC) procedure for certain stress-like variables of smoothed FEM solutions, are reported in this 
paper. The effectiveness of BNC is shown through three examples of steady flow problems, and a posterior 
error analysis based on the multiple-mesh extrapolation technique has been used for estimating the 
convergence rates. 
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1. INTRODUCTION 

In the Galerkin/penalty finite element formulation with the reduced and selective integration 
technique, or in the mixed FEM with the discontinuous pressure approximation, the pressure 
field is expected to  have jumps from element to element. As a matter of fact, all velocity (or 
displacement) derivatives for Co-isoparametric elements are, in general, discontinuous across 
element boundaries. Thus for post-processing purposes it is desirable to employ a smoothing 
scheme to smooth the solutions. Another reason for employing a smoothing procedure is that 
certain FE elements, such as the bilinearlconstant-p, have ‘spurious pressure modes’.’ Although 
these modes are automatically ‘filtered’ by using the penalty formulation, the associated gen- 
eralized checkerboard modes2 are often present, particularly in problems with singularities.’ In 
such cases, filtering or smoothing of the pressure is required. In practice, the smoothing scheme is 
applicable not only to pressure but also to stress and stress-like variables. Usually, smoothing 
schemes of a least-squares type1q3 seem to perform very well at interior nodes but leave 
something to be desired at boundary nodes. To improve upon the results, a ‘correction’ at each 
boundary node can be perf~rmed.~.  Even when no generalized checkerboards are present, 
smoothing of the stress-like variables can lead to improved accuracy. 

In this paper we would like to share our experience of applying boundary node correction (BNC) 
on the smoothed field solutions and to report some convergence improvement for certain stress- 
like variables at the boundary which we have observed in our flow problem solving. The 
convergence improvement and superconvergence behaviour achieved through BNC will be 
shown via three examples of flow problems with a posterior error analysis6 based on multi-mesh 
extrapolation. 
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2. BOUNDARY NODE CORRECTION 

Consider the standard four-node isoparametric element. The smoothed values at internal nodes 
are usually good and need no correction. The boundary nodes can be further segregated into 
three groups, i.e. non-corner boundary nodes, external corner nodes and internal corner nodes, as 
illustrated in Figure 1. BNC can be formulated in the physical co-ordinate system or in the 
isoparametric mapped co-ordinate system. In our numerical computation BNC is carried out in 
the following steps in 

1. Correct non-corner boundary nodes by the linear extrapolation 
- 
PA 2PA - PH, (1) 

where A is a typical non-corner boundary node, B is the adjacent internal node on the same 
element side (see Figure l(a)), P is the smoothed pressure and is the corrected P. 

2. Correct external corner nodes by either the physical co-ordinate formulation 

(a) Noncomer B o u n d q  Node (h) External Comer Node 

(c) Intenid Coma Node 

Figure I .  Definition of three types of boundary nodes 
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where 

LD = xIBx2C - XICXZB, 

L = L B  + Lc + L D ,  

or the isoparametric mapped co-ordinate formulation 

F A  = PB - PC + PO. (6) 

Here A, B, C and D are the four nodes of the corner element, with A being the external 
corner node as shown in Figure I(b). 

3. Correct internal corner nodes (see Figure l(c)) by the same linear extrapolation through 
nodes B, C and D using (2)45)  or (6). 

It should be emphasized that the order of BNC steps is of great importance and ought to be 
followed exactly, because for an external corner element there are three nodes that need 
corrections and the corner node correction obviously depends upon the other two non-corner 
boundary nodes, which should be corrected first. 

From equations (1H6) we can see that the BNC formulae, and hence the BNC results, of the 
formulations in both physical co-ordinates and isoparametric mapped co-ordinates are exactly 
the same at  non-corner boundary nodes. At corner nodes it is easy to verify that equations (2H5) 
are equivalent to (6) for rectangular elements. Therefore the real difference between the two 
formulations will emerge only for non-rectangular elements. Obviously, equation (6) is com- 
putationally much simpler since no explicit evaluation of co-ordinates is needed. 

3. NUMERICAL RESULTS 

The FEM program FLUCODE7 which we have used in our numerical computations employs 
the Galerkin/penalty formulation and the NRC element,' which is a quadrilateral formed by four 
linear triangles whose interior sides define the diagonals of the quadrilateral. The velocity is 
approximated by a linear function and the stress and pressure are approximated by piecewise 
constants on each triangular element. The pressure-smoothing scheme of Malkus-Olsen' is 
implemented for post-processing of pressure, stress and other stress-like variables, such as the 
shear strain rate and the first normal stress difference N ,  . The BNC procedure is as described in 
Section 2. FLUCODE can be used for solving flow problems of some non-Newtonian fluids as 
well as Newtonian fluids. For non-Newtonian flows, FLUCODE is implemented with the single- 
integral form model and the particle-tracking technique.' 

The first example is a Stokes flow over a transverse slot (Re  = 0). The co-ordinate system, FE 
mesh and boundary conditions are shown in Figure 2. The pressure at the flow outlet before and 
after BNC is plotted in Figure 3. This is a typical example for illustrating the importance of 
following the order of BNC steps. One can see from Figure 3 that the good result (plotted as solid 
line) is obtained only by following the order of BNC steps exactly. 
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Figure 2. 2D flows over a transverse slot 
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Figure 3. Pressure BNC at flow outlet for example 1: *, smoothed pressure before BNC; A, corrected pressure when 
BNC is carried out in order of FE nodal numbering; -, corrected pressure by following exactly the order of BNC steps 

given in Section 2 

The second example is a planar Poiseuille flow over a transverse slot of a Maxwell fluid. We use 
this flow problem to show the superconvergence behaviour of certain quantities achieved by 
BNC. The posterior error analysis and multiple-mesh extrapolation technique6 were used to 
estimate the convergence rate (see the Appendix for a brief review). The FE mesh 1 and boundary 
conditions are the same as shown in Figure 2, except that outlet velocity profile is also specified in 
this case. The subsequent meshes obtained by subdividing mesh 1 are described in the Appendix. 
The material parameters we used are: relaxation time T = 0,9666; zero-shear-rate viscosity 
p(0)  = 4101.25; slip parameter a = 1. Table I shows the superconvergence of the undisturbed wall 
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Table I. Superconvergence of S and j ,  achieved by BNC 

(a) Raw and extrapolated S by meshes 1, 2, 3 before BNC 

De Ax2 Ax3 L12 L23 Q123 C l  c2 r l  r2 

0.10 0.07500 0.08750 0.09167 0.1000 0.1000 0.1000 -0.1003 0.0010 -0.002 3.0 
0.25 0.18750 0.21875 0.22917 0.2500 0,2500 0.2500 -0.2500 O.oo00 0.000 3.0 
0.50 0.37500 0.43750 0.45834 0.5000 0.5000 0.5002 -0.5002 O.oo00 0,000 3.0 
1 .00 0.75004 0.87501 0.91669 1900 1~OOO 1.OOO -1.001 0.0040 0.000 3.0 

(b) Raw and extrapolated S by meshes 1, 2, 3 after BNC 

De Ax1 A x 2  A x 3  L12  L23 Q i 2 3  Cl c 2  

0.10 0.1ooOO 0~10000 0.1oo00 0.1000 0.1OOO 0.1000 -04005 0~0010 
0.25 0.25000 0.25001 0.25001 0.2500 02500 0.2500 -0.0003 OQO06 
0.50 03000 0.5oooO 0.5oooO 0.5000 0.5000 0.5000 -0.0010 0.0030 
1 .00 1.0000 10000 1,ooOO 1.000 1-000 1.OOO -0.0030 0,0095 

Table 11. Convergence improvement of N,, by BNC 

(a) Raw and extrapolated N,, by meshes 1, 2, 3 before BNC 

010 47.732 64.952 71.307 82.172 84.019 84.943 -171.0 88.69 -0.13 2.71 

0.50 1193.3 1624.2 1782.7 2055.1 2099.6 2121.9 -4249.0 2137.0 -0.13 2.72 
1.00 4773.6 6496.7 7130.8 8219.8 8399.1 8488.7 - 17011.0 8604.6 -0.13 2.72 

0.25 298.33 406.06 445.68 513.79 524.91 530.46 -1062.0 533.4 -0.13 2.72 

(b) Raw and extrapolated N,, by meshes 1, 2, 3 after BNC 

De AX1 AX2 Ax3 L I Z  Q I Z J  C l  cz r l  r2 

010  68.947 80.864 83.095 92.780 87.557 84.945 - 1.314 -250.7 47.7 5.34 
0.25 43093 505.52 519'36 580'10 547.05 530.53 -1.785 -1586.0 222.0 5.39 
0.50 1723.7 2022.0 2077.4 2320.4 2188.2 2122.2 -8.123 -6343.0 195.0 5.39 
1.00 6895-4 8087.8 8309.6 9280'1 8753.4 8490.0 -57.97 -25282.0 109.0 5.37 

(c) Raw and extrapolated N,, by meshes 1, 2, 4 after BNC 

De A s 1  A.uz Ax4 L I Z  L,, Q124 C l  c2 r l  rz 

0.10 68.947 80.864 83,864 92,780 86.865 84.893 -0.6904 - 252.4 91.4 3.97 
0.25 430.93 505.52 524.14 580.10 542.77 530.33 05786 -1592.0 -688.0 4.00 
0.50 1723.7 2022.0 2096.5 2320.4 2171,O 2121.2 3.658 -6374.0 -436.0 4.00 
1.00 6895.4 8087'8 8386.0 9280.1 8684.3 8485.7 -6371 -25420.0 997.0 4.00 

shear rate j ,  and the scaled shear stress S = To,/p(O). S and f, have a first-order convergence 
rate when they are just smoothed, as shown in Table I(a). From Table I(b) one can see that they 
gain superconvergence after BNC and even the crudest mesh gives the exact values of S and iW 
(here we have S = Pj, 3 De). The convergence improvement of N,, (the undisturbed first 
normal stress difference at the wall) is given in Table 11. As indicated by the convergence indicator 
r 2 ,  the convergence rate of N , ,  is improved from first order before BNC to second order after 
BNC. The exact values of N,, at De = 0.10,0.25,05 and 1.0 are N , ,  = 2p(0)(De)2/T~84-859, 
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Figure 4. 2D flow between two concentric cylinders 
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Figure 5 .  BNC of shear stress a,, for example 3: -, analytical solution ur0 = 20/(3r2); A ,  smoothed FEM solution by 
FLUCODE 0.  BNC corrected values 

530-37, 21 21-5 and 8485-9 respectively. We concltide that S ,  j ~ ,  and N , ,  gain superconvergence 
because, on the basis of the linear element used in FLUCODE, we are generally expecting only a 
first-order convergence rate in stress-like variables. 

The third example is a Stokes flow between two concentric cylinders ( R e  = 0) with the outer 
cylinder fixed and the inner cylinder rotating at constant angular velocity w. We choose this 
problem to show how BNC works for non-rectangular elements. One of the meshes, i.e. mesh 2, 
with boundary conditions is pictured in Figure 4. The dimensionless parameters used are: w = 10; 
radius of inner cylinder, R ,  = 0.5; radius of outer cylinder, R ,  = 1; density p = 0; viscosity q = 1. 
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Table 111. Raw and extrapolated ud by meshes 1, 2, 4 after BNC 

1 25.982 27.353 27.093 28.723 26.833 26.202 26.667 
2 10.61 1 7.9585 7.2 142 5.3065 6.4699 64578 6.6667 
3 25320 26.500 26751 27.680 27.002 26.776 26.667 
4 7.2498 7.3106 7.0704 7.3714 6.8301 6.6497 6.6667 
I *  28.002 27.71 1 27.146 27.421 26.581 26.301 26.667 
2* 9.925 1 7.8833 7.2055 5.841 5 6.5277 6.7565 6.6667 

Figure 5 shows the BNC results for the shear stress ar0 along the radial direction (6' = 7c/2 in 
Figure4). One can see that BNC did a good job at the inner cylinder boundary (where the 
velocity gradient is large) but made hardly any improvement at the outer cylinder boundary 
(where the velocity gradient is small). The three-mesh (meshes 1,2  and 4) extrapolation results for 
the shear stress at some boundary nodes are given in Table 111. An improvement in convergence 
rate has been observed after BNC at some boundary nodes, such as 2 and 3 in Figure 4, The 
first four rows of Table 111 are computed by the physical co-ordinate formulation, namely 
equations (1H5). The last two rows of Table 111, i.e. 1* and 2*, are obtained by equation (6) 
at corner nodes 1 and 2. The numerical results of this example show that for a crude mesh 
the value corrected by (6)  may sometimes not be as good as that given by (2H5) (e.g. com- 
pare the crr8 = 28.002 of mesh 1 in the penultimate row with arre = 25982 in the second row 
in Table 111). However, for a fine mesh the boundary values corrected by (6)  and (2H5) are very 
close; and also the accuracy of the extrapolated QlZ4 based on (6)  seems a little better than those 
based on (2H5). Therefore it is hard to say which formulation is really superior in accuracy 
solely from this particular example. 

4. CLOSING REMARKS 

Our numerical experience shows that BNC is quite effective in improving the accuracy of 
smoothed FE  solutions at the boundary and is applicable not only to pressure but also to stress 
and other stress-like variables. The BNC formulation in the isoparametric mapped co-ordinate 
system, i.e. equation (6), is seemingly preferable because of its simplicity in computation and 
because it yields the same results for rectangular elements and at least the same accuracy for fine- 
enough non-rectangular elements. Improved convergence rate and superconvergence behaviour 
have been observed for certain variables, such as alz, i and N , ,  after BNC at the part of the 
boundary where the velocity (or displacement) gradient is large. However, according to our 
numerical results, there is no convergence improvement by BNC at non-corner boundary nodes 
where the velocity (or displacement) gradient is small. 

APPENDIX: POSTERIOR ERROR ANALYSIS AND MULTIPLE-MESH 
EXTRAPOLATION6 

Let H(a, Ax) denote a typical quantity in the FEM solution, such as the first normal stress 
difference Nl(a,  Ax). Here N,(a, Ax) is the value of N,(a) computed by the FEM on a grid with 
typical element size Ax. Then H(a, Ax) is presumed to have an asymptotic error series in Ax 
about Ax = 0, i.e. 

H(a, AX) = H(a, 0) + (Ax)"[CI(H, a) + C z ( H ,  O)AX + C , ( H ,   AX)' + . . . ] (7) 
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for 0 < v I 1. Ci(H, CJ) are coefficients to be determined; v = 1 is appropriate for the results 
presented here.6 

The basic technique of posterior error analysis is multiple-mesh extrapolation. One can begin 
with a crude mesh, e.g. mesh 1 with Axl.  The subsequent meshes are obtained by subdividing 
mesh 1 equally in both co-ordinate directions. Use Axi to denote the typical element size of mesh i 
( i  = 1, 2, 3, 4) and assume Ax, 7 Ax,/2, Ax3 = Ax1/3, Ax4 = Ax,/4. Taking three-mesh extra- 
polation as an example, we first view (7) as the general interpolation problem with truncated finite 
terms, i.e. 

C, + AxiC1 + (Axi)’C2 = H(o, Axi) ( i  = 1, 2, 3), (8) 

where C,=H(a, 0), C, -C,(H, a) and C, -C,(H, CJ). Then we introduce the notation used by 
Malkus to write the extrapolation procedure simply in terms of the linear and quadratic 
extrapolation results, namely 

L,,(H, a) = 2H(a, Ax1/2) - H(cJ,  AX^), 

L , 3 ( H ,  CJ) = 3H(a, A X 1 / 3 )  - 2H(0,  AX,/^), (9) 

Q 1 2 3 ( H ?  = $ L Z 3 ( H ,  - 

Here L,,(H, a) (r, m = 1,2, 3,4) represents the linear extrapolation value of H(a, Ax) at Ax = 0, 
approximated by meshes r and m, and Q,,,(H, a) (r, m, s = 1, 2, 3, 4) den’otes the quadratic 
extrapolation value of H at Ax = 0, approximated by meshes r, m and s. By solving (8) and 
using (9), one can get C,, C, and C, in terms of L, , ,  L,, and Q 1 2 3 ,  accurate to O([Ax, 1’). 

Three useful internal consistency checks are also proposed in Reference 6, two of which were 
used in this paper: They are: 

(i) Computing 

r1 = C,(H, a)Ax,/C,(H, a ) ~ C , A x , / C ,  

to estimate the relative contributions at first and second order respectively 
(ii) checking 

H ( a ,  AX,)  - H ( a ,  AX,) r2  = ___ 
H(a, Ax,) - H ( o ,  Ax> 

to estimate the dominance of the leading-order term over the rest of the asymptotic series.8 

In regard to (ii), if the discetization error EA( H ,  o, Ax) + Ci(Ax)Pt + o( I Ax IPt) and if the ‘little 0’ is 
sufficiently small, we have 

(AX,)”’ - (AX,)” 
r, - -~ 

( A X , ) ~ ~  -   AX,)!'^' 

When meshes 1, 2 and 3 are used, (10) yields 

1 - (1 /2)P* 3.0, pi = p 1  = 1, 
5.4, pi = p ,  = 2. 

r , (L 2, 3) = 

When meshes 1, 2, and 4 are used, (10) gives 

1 - (1 /2)Pi 2.0, pi = p ,  = 1, 
(1/2)Pi - (1/4)pi = { 4.0, pi = p 2  = 2. rz(1,  2, 4) = 



BOUNDARY NODE CORRECTION AND SUPERCONVERGENCE 72 1 

For a particular three-mesh extrapolation, say meshes 1, 2 and 3, we shall consider it strong 
evidence that the method is first order and in its asymptotic range if rl  is small and rz  is near 3, 
and that the method is second order and in its asymptotic range if rl is very large and r2  is 
near 5.4. Otherwise we shall conclude that the analysis is indeterminate if r2  is close to neither 3 
nor 5.4. Such a case could also possibly indicate that the method is third or higher order in Ax, 
which we have observed for some quantities7 as a consequence of superconvergence after BNC. 
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